Mark schemes

Q1.

(a) When B = logic 0, (point D is logic 1.) (Result: closes the lower AND gate and opens the upper AND gate.) Only the 1024 Hz signal is allowed to (pass through to the OR gate) output Q. ✓

1st mark:

- explanation for either logic 1 or logic 0 input
- reference as to which frequency passes through OR gate.

When B = logic 1,(point D is logic 0). (Result: closes the upper AND gate and opens the lower AND gate.) Only the 512 Hz signal is allowed to (pass through to the OR gate) output Q. \checkmark

2nd mark:

reference to other half of the cycle and output frequency.

1 Max if there is no reference to the action of at least 1 gate.

2

(b) **Q** =
$$(A . \overline{B}) + (B . C) \checkmark \checkmark$$

1st mark for: contents of either bracket 2nd mark for: contents of other bracket and the '+'

2

Mark awarded if all the following are present:

- resistor and push-to-make switch are in correct position
- output point in correct position and labelled.

(d) **Q**₉ ✓

$$2^{(n+1)} = 1024$$

Condone n = 9

1

(e) Option 1 requires a total of 6 ICs whereas Option 2 requires a total of 3 ICs ✓

Advantage: One from: ✓

- smaller circuit to fit toys
- less power consumed / extended battery life
- less complex circuits / lower production costs

1st mark: identifies the main advantage (must be numerical)

2nd mark: gives one advantage from the list /or other valid explanation

Allow one mark for answers that only consider number of **logic gates** in the two systems leading to the correct conclusion.

2

[8]

Q2.

- (a) 1 from **√**
 - 160 × 7 = 1120 bits
 - 140 bytes seen
 - their number of bits ÷ (64 × 10³)
 - their number of bytes ÷ (8 × 10³)

1st mark for correct bits or bytes conversion in message or time calculation

= $17.5 \times 10^{-3} \text{ s} \checkmark$

2nd mark for answer Allow 2 sf answer.

2

(b) Internal noise:

thermal agitation of electrons / charge carriers in a conductor

Accept one example for the mark

OR

External noise:

idea of electromagnetic interference (EMI) eg cross-talk / power switching etc. \checkmark

- (c) Effect of electrical noise on the signal:
 - degrades the quality of the signal ✓

Effect of electrical noise on the communication system:

- reduces the efficiency of the transmission e.g. increased latency of the system \checkmark

1st mark - 0 to 5 V sq wave with 3 marks and two spaces

2nd mark - any three correct transitions.

2

1

1

Q3.

(a)

1 mark for use of the correct counter outputs 1 mark for the correct logic gate connected to reset **R**

(b) input **C** segment **b** ✓

Both input and segment needed for the mark Do not allow **B** for **b**

(c) f ✓
Allow F for f

(d)

MP1: all inputs inverted (accept a shorted-out NAND or NOR gates for the inverters)

MP2: for correct use of AND and NAND

Condone a NOT following an AND for the NAND gate.

MP3: for final gate being OR

2

2

1

Q4.

(a) *Ā* **√**

. B 🗸

Ā.B√

Do not allow $\overline{A} + \overline{B}$

(b) EOR ✓

Accept: XOR; EXOR; Exclusive OR gate

(c)

В	Α	С	D	E	X	Υ	Z
0	0	1	1	0	0	1	0
0	1	0	1	1	0	0	1
1	0	1	0	1	1	0	0
1	1	0	0	0	0	1	0

X and Z correct ✓

Y correct ✓

(d) NOR gate ✓

Also accept any of:

EXNOR; ENOR; XNOR; Exclusive NOR gate

(e)

X Y Z

A = B	A < B	A > B

[7]

3

Q5.

- (a) When V_c reaches a value of V_u , the output voltage $V_{\rm out}$ drops LOW. \checkmark
 - The capacitor now discharges through the resistor causing the value of V_c to fall. \checkmark
 - When V_c reaches a value of V_L , the output voltage V_{out} jumps HIGH. \checkmark

(b) Mark-to-space ratio

 $R_{\rm B}$ gets smaller and hence ($t_{\rm H}$) is reduced

OR

R_A gets bigger and hence (t_L) is increased ✓

First mark: Either statement or equivalent labelled diagram(s).

Hence mark:space ratio is reduced / smaller ✓

Second mark: Conclusion

$$\frac{1}{T} = \frac{1}{(t_H + t_L)} = \frac{1}{0.7C (2R + R_A + R_B)}$$

The total resistance $(2R + R_A + R_B)$ is constant \checkmark

As a result of a constant resistance in the circuit, PRF does not change \(\strict{\sqrt{}} \)

First mark: explanation of how total resistance in the circuit affects the periodic time

Second mark: Conclusion.